Australian Researchers Combine Robotics and 3D Printing to Design a Prosthetic That Could Restore the Sense of Touch
by
Prosthetic limbs have come a long way in a very short amount of time. Not long ago, prosthetic hands and arms were clunky, awkward and limited in function. Now, thanks to 3D printing, prosthetics can be quickly and easily custom-fit and even specially designed for functions like playing basketball or swimming. People who have lost limbs are no longer limited in what they can do, as 3D printed prosthetics continue to develop and offer function and mobility that rival that of a natural limb.
One thing that prosthetics haven’t really managed to do yet, though, is restore the sense of touch. The loss of that sense in any limb is a great one; I can only imagine what it must be like to no longer be able to experience texture, warmth, or coolness in one or more extremities. Even that limitation, however, may soon be a thing of the past thanks to a collaboration between the University of Melbourne, the University of Wollongong, and several other institutions coordinated by St. Vincent’s Hospital’s Aikenhead Centre for Medical Discovery.
A group of researchers from the Australian institutions is studying the way the human arm communicates signals to the brain, with the intention of reproducing that signaling process artificially. Right now they’re working on prototyping a robotic arm that would use 3D printed microchips to facilitate communication between implanted electrodes and natural tissue and muscle. The project stems largely from the research of Mark Cook, a neurologist at St. Vincent’s, who used a highly complex set of mathematical models to record and decode the electrical activity happening in the brains of test subjects as they performed different movements. By analyzing the recordings, Dr. Cook was able to ascertain which combinations of electrical signals correlated to which movements.