Making Spinal Connections with Flexible Implants

By Carlos Gonzalez

Advances in spinal repair will allow people to regain movement and sensation by using cracked gold. Developed by Professors Stephanie Lacour and Gregoire Courtine at the Centre for Neuroprosthetics at Switzerland’s École Polytechnique Fédérale de Lausanne, the e-Dura implant is specifically designed for use on the surface of brain or spinal cord implementation. This small device can imitate the mechanical properties of living tissue, delivering electric impulses and pharmacological substances to the brain or spine.

The implant is as flexible and stretchable as living dura tissue matter. The e-Dura is comprised of a silicon substrate covered with cracked gold electric conducting tracks that can be pulled and is stretchable. “If we introduce micro cracks that are randomly distributed, then the gold ligaments that are between the cracks form a continuous structure that can withstand the deformation,” according to Lacour, adding that when the structure is pulled on, “the micro cracks open and rearrange themselves, and the gold in between is not strained.”

The electrodes are made of composite silicon and platinum microbeads. They can bend and deform in any direction. The delivery of the pharmacological substances is performed via a fluidic microchannel (neurotransmitters) that reanimate the nerve cells. Lacour notes that the “e-Dura implant can remain for a long period of time on the spinal cord or the cortex, precisely because it has the same mechanical properties as the dura mater itself.” Prior surface implants did not have a long lifespan due to the rigid material rubbing against dura matter (i.e., the nervous system’s protective envelope). This leads to inflammation, scar tissue buildup, and rejection.

READ MORE HERE

3 comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Keep Up to Date with the Most Important News

By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use