A few weeks ago FDA released a Discussion Paper to facilitate the dialog of the upcoming Public Workshop (starting on Monday).
The document is a great starting point, and identifies key critical aspects of the field, however, it has some shortcomings that should be addressed to make the meeting and the overall dialogue most fruitful.
- The FDA Discussion Paper defines robotic surgery (p.2) as a classical master-slave teleoperational system. Later it confirms that it is only addressing “da Vinci type” robotic devices as RASD (p.8). This narrowing of the scope immediately creates a vast void on the imagined landscape of robotic surgery devices, since there are already a dozen different systems cleared by the FDA (see our recent survey), and numerous other types are to come. Image-guided surgical robots (ROSA, neuromate, THINK Surgical (aka ROBODOC), iSYS, Mazor’s SpineAssist), the catheter robots and other special types (e.g., ARTAS’ hair restoration system) are all considered to be surgical robots. These systems’ milestone achievements are all missing e.g. from the historical overview (p.4).
- Further NOTES devices, capsule robots, nanorobots and other emerging platforms should also be addressed by the workshop.
- Energy delivering robots are not addressed either, such as CyberKnife or HIFU robots.
- While FDA uses the current ISO definition of Robots (ISO 8373:2013), this standard also defines “robotic devices”, through which the scope of the definition can be extended. Most importantly, the ISO/TC 184/SC 2/JWG 9 is actively working on a Technical Report to define the “Degree of Autonomy”, which is currently not defined. According to the current draft, kinematic capabilities (and master-slave teleoperation in general) will be considered to be a lower level of DoA, therefore da Vinci type systems are expected to clearly fall under the category of “robot”.
- Haptic feedback (p.5) exists for some systems (e.g., MAKOplasty), yet the cost/benefit ratio should be established first for master-slave systems.