Nanofiber-Based Wound Dressings Help Against Surgical Site Infections
Oregon State University – 07-06-18
Nanofiber-based wound dressings loaded with vitamin D spur the production of an antimicrobial peptide, a key step forward in the battle against surgical site infections, or SSIs.
The findings by Oregon State University researchers and other collaborators, published Wednesday in Nanomedicine, are important because SSIs are the most common healthcare-associated infection and result in widespread human suffering and economic loss.
Each year in the U.S. alone, nearly 300,000 surgical patients develop an infection within 30 days of their operation – accounting for an estimated $10 billion in additional healthcare costs – and more than 13,000 of those people die.
Researchers used electrospinning to prepare dressings containing the bioactive form of vitamin D: 1,25-dihydroxyvitamin D3, or 1,25(OH)2D3.
“Electrospinning is a versatile, simple, cost-effective and reproducible technique for generating long fibers with nanoscale diameters,” said Adrian Gombart, co-corresponding author and professor of biochemistry and biophysics in OSU’s College of Science. “Electrospun nanofiber wound dressings offer significant advantages over hydrogels or sponges for local drug delivery. They provide several functional and structural advantages, including scar-free healing.”
The dressings the researchers created proved capable of delivering vitamin D on a sustained basis over four weeks, and they significantly induced production of a peptide, hCAP18/LL37, that kills microbes by disrupting their membranes.
Superb blog, thanks for telling how much nanofiber is useful to curing surgical wounds.