Spine

Safe and Efficacious Treatment of Spondylolisthesis via MIS TLIF Approach with the FlareHawk® Expandable Cage

IJSS-published review finds that the novel biplanar expandable cage provides effective vertebral body slip or spondylolisthesis reduction and improvement in radiographic and clinical parameters with no reported subsidence, migration, or endplate violation.

PALM BEACH GARDENS, Fla., December 1, 2020 (GLOBE NEWSWIRE) – Integrity Implants Inc., a privately held medical device company dedicated to delivering innovative solutions for spine surgery, today announced the publication of another in a series of recent clinical articles in the International Journal of Spine Surgery (www.ijssurgery.com) highlighting its FlareHawk® expandable interbody cage. In their paper, Clinical and Radiographic Outcomes After Minimally Invasive Transforaminal Lumbar Interbody Fusion (MIS TLIF) – Early Experience Using a Biplanar Expandable Cage for Lumbar Spondylolisthesis (International Journal of Spine Surgery October 2020, 7125; DOI: https://doi.org/10.14444/7125), Lee A. Tan, Joshua Rivera, Xiao A. Tan, Vivian P. Le, Larry T. Khoo, and Sigurd H. Berven demonstrate favorable vertebral body slip or spondylolisthesis reduction accompanied by an increase in segmental lordosis and positive patient-reported outcomes.

The retrospective review of 13 patients treated during a one-year period found a mean slippage reduction of 6.0mm along with an improvement in segmental lordosis, increases in foraminal and posterior disc height, as well as improvement in all radiographic parameters postoperatively. Patient-reported outcome measures including VAS back, VAS leg, and EQ5D also improved across the board. There were no findings of endplate violation, cage subsidence, or cage migration, and there were no reoperations or implant-related complications.

Lee Tan, M.D., Assistant Professor of Neurological Surgery at UCSF Medical Center in San Francisco, California, shares, “My early experience shows good short-term radiographic and clinical outcomes, with almost complete reduction of spondylolisthesis postoperatively in all cases. The absence of nerve root injury is suggestive that the biplanar expandable cage is safe and obviates the need for excessive nerve root retraction during cage insertion.”

As discussed in the article, one possible explanation for the clinical success is that the expansion of the cage in the horizontal plane increases surface area contact with the endplates to better distribute the load and reduce stress, while the multi-material cage design consisting of a titanium shim inserted into a PEEK shell allows the cage to contour to the patient’s endplates, further reducing the risk of endplate violation.

Sigurd Berven, M.D., Professor in Residence, Department of Orthopaedic Surgery at the University of California at San Francisco, adds, “A challenging aspect of the MIS TLIF procedure is inserting the cage through a relatively small surgical corridor with protection of the neural elements. Additionally, in a lordotic disc space, the posterior disc height is typically shorter than the anterior disc height, thus limiting the size of cage that can be inserted posteriorly, potentially limiting the amount of lordosis restoration. In these cases that often present with a collapsed disc space and bone-on-bone pathology, the low-profile, biplanar, and lordotically expanding FlareHawk cage is ideal for reducing risk to the neural elements on insertion of the implant, and for improving the surface area of the implant with the endplate and the restoration of segmental lordosis. After insertion, the cage and prepared disc space can be filled with allograft or autograft to optimize fusion. The results of the study are encouraging regarding the efficacy of MIS fusion using the technique.”

Dr. Tan concludes, “Remarkably, we had no cases of endplate violation or cage subsidence in this cohort. This is significantly lower than the rates reported in the current literature, which range from 6% up to 33%. I believe that the biplanar expansion is key to decreasing the likelihood of subsidence.”

The FlareHawk spinal implant is the flagship product for Integrity Implants and represents the first of its kind in the expandable cage market. Much like coronary stents that offer patients a less-invasive alternative to open-heart procedures, the FlareHawk expandable cage features a PEEK shell that is inserted in a compressed form that can be effectively passed through small neural pathways, and, once within the intervertebral disc space, expanded to a larger footprint and height. An open-architecture titanium shim inserted within the PEEK shell produces the expansion and creates a solid-state construct that is resistant to collapse yet has shown the ability to conform to endplate anatomy to increase surface contact area and lower stresses. The Adaptive Geometry™ and advanced multi-material composition embodied in the FlareHawk device respect patient anatomy both during insertion and for long-term stability. To date, over 8,500 FlareHawk cages have been implanted in more than 6,000 patients.

Chris Walsh, Integrity Implants CEO, adds, “Last month, we shared the encouraging results of a multi-center study highlighting the favorable fusion efficacy and endplate conforming geometry of the FlareHawk cage. This work by surgeons Lee Tan, Sig Berven, and Larry Khoo represents the third peer-reviewed study of the FlareHawk cage this year. Beyond intrinsic cage design and performance, the study addresses a specific pathology solution that resonates with surgeons. It is encouraging to see published literature echo surgeon confidence in the FlareHawk cage, and documenting the application of Adaptive Geometry to the important and increasingly popular MIS TLIF approach is yet another step in confirming our technology as a compelling clinical choice for surgeons.”

About FlareHawk Expandable Lumbar Interbody Fusion System

The FlareHawk Interbody Fusion System is indicated for spinal intervertebral body fusion with autogenous bone graft and/or allogeneic bone graft composed of cancellous and/or corticocancellous bone in skeletally mature individuals with degenerative disc disease (DDD) at one or two contiguous levels from L2 to S1, following discectomy. DDD is defined as discogenic back pain with degeneration of the disc confirmed by history and radiographic studies. These patients should have at least six (6) months of non-operative treatment. Additionally, these patients may have up to Grade 1 spondylolisthesis or retrolisthesis at the involved level(s). FlareHawk system spacers are intended to be used with supplemental fixation instrumentation, which has been cleared for use in the lumbar spine.

About Integrity Implants Inc.

Integrity Implants, founded in 2016 by seasoned business partners and spine leaders Chris Walsh and Wyatt Geist, is a privately held medical device company headquartered in Palm Beach Gardens, Florida. The Company is dedicated to delivering innovative spine products and solutions to surgeons and their patients around the globe. Its proprietary Adaptive Geometry™ technology fundamentally respects a patient’s neural, vascular, bony, and soft tissue anatomy, both during and after implantation.

For more information, please visit the Company’s website at www.integrityimplants.com.

Media Contact:

Mark Richards

512-913-9572

mrichards@integrityimplants.com

Josh Sandberg

Josh Sandberg is the President and CEO of Ortho Spine Partners and sits on several company and industry related Boards. He also is the Creator and Editor of OrthoSpineNews.

Related Articles

Back to top button